Potential Impacts of Solar Cooking in Afghanistan

Number of known solar cookers: 30,338

80% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 28,424,065 people

CO₂ emissions prevented from using existing solar cookers:

43,687 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

11,401,296 metric tonnes

2017 Gross Domestic Product:

$19,543,976,895

Premature deaths due to household air pollution:

21,141

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,919,512,261
Potential Impacts of Solar Cooking in Albania

Number of known solar cookers:

37% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 1,063,179 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

426,456 metric tonnes

2017 Gross Domestic Product:

$13,038,538,300

Premature deaths due to household air pollution:

1,381

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$534,551,463
Potential Impacts of Solar Cooking in Algeria

Number of known solar cookers:

Less than 5%

of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 2,065,907 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

828,665 metric tonnes

Premature deaths due to household air pollution:

2,688

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,184,741,972

2017 Gross Domestic Product:

$167,555,280,113
Potential Impacts of Solar Cooking in Andorra

Number of known solar cookers:

% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = people

2017 Gross Domestic Product: $3,012,914,131

CO₂ emissions prevented from using existing solar cookers: metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: metric tonnes

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $
Potential Impacts of Solar Cooking in Angola

Number of known solar cookers: 20

54% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 16,083,464 people

CO₂ emissions prevented from using existing solar cookers:

29 metric tonnes

2017 Gross Domestic Product:

$122,123,822,334

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

6,451,306 metric tonnes

Premature deaths due to household air pollution:

13,384

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$3,078,375,182
Potential Impacts of Solar Cooking in Antigua and Barbuda

Number of known solar cookers:

1%

of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 1,020 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

409 metric tonnes

2017 Gross Domestic Product:

$1,510,084,751

Premature deaths due to household air pollution:

2

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$995,904
Potential Impacts of Solar Cooking in Argentina

Number of known solar cookers: 3,723

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 442,710 people

CO₂ emissions prevented from using existing solar cookers: 5,361 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 177,577 metric tonnes

2017 Gross Domestic Product: $637,430,331,479

Premature deaths due to household air pollution: 1,560

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $670,303,422
Potential Impacts of Solar Cooking in Armenia

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 29,305 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

11,754 metric tonnes

2017 Gross Domestic Product:

$11,536,590,636

Premature deaths due to household air pollution:

194

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$58,936,588
Potential Impacts of Solar Cooking in Aruba

Number of known solar cookers:

% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = people

2017 Gross Domestic Product: $2,700,558,659

CO₂ emissions prevented from using existing solar cookers: metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: metric tonnes

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
Potential Impacts of Solar Cooking in Australia

Number of known solar cookers: 334

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 245,989 people

CO₂ emissions prevented from using existing solar cookers:

481 metric tonnes

2017 Gross Domestic Product:

$1,323,421,072,479

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

98,670 metric tonnes

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,036,033
Potential Impacts of Solar Cooking in Austria

Number of known solar cookers:
Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= 88,092 people

CO$_2$ emissions prevented from using existing solar cookers:

Potential prevented CO$_2$ emissions by switching from solid fuels to solar cooking:
35,335 metric tonnes

2017 Gross Domestic Product:
$416,595,666,397

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook $\frac{3}{4}$ of the time:
$371,018
Potential Impacts of Solar Cooking in Azerbaijan

Number of known solar cookers:

6%
of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 591,746 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

237,358 metric tonnes

2017 Gross Domestic Product:

$40,747,792,238

Premature deaths due to household air pollution:

746

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$364,971,429
Potential Impacts of Solar Cooking in Bahamas

<table>
<thead>
<tr>
<th>Number of known solar cookers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 5%</td>
</tr>
<tr>
<td>of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)</td>
</tr>
<tr>
<td>= 3,954 people</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO₂ emissions prevented from using existing solar cookers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>metric tonnes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2017 Gross Domestic Product:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$12,162,100,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,586 metric tonnes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Premature deaths due to household air pollution:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potential savings if 100% of people using solid fuels solar cook ¼ of the time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$16,651</td>
</tr>
</tbody>
</table>
Potential Impacts of Solar Cooking in Bahrain

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 14,926 people

CO$_2$ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO$_2$ emissions by switching from solid fuels to solar cooking:

5,987 metric tonnes

2017 Gross Domestic Product:

$35,307,127,660

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$62,863
Potential Impacts of Solar Cooking in Bangladesh

Number of known solar cookers:

89% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 146,556,078 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

58,785,725 metric tonnes

2017 Gross Domestic Product:

$249,723,862,487

Premature deaths due to household air pollution:

113,202

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$17,139,098,435
Potential Impacts of Solar Cooking in Barbados

Number of known solar cookers: Less than 5%

of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 2,857 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

1,146 metric tonnes

2017 Gross Domestic Product: $4,673,500,000

Premature deaths due to household air pollution:

4

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,504,391
Potential Impacts of Solar Cooking in Belarus

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 95,079 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

38,137 metric tonnes

2017 Gross Domestic Product:

$54,456,465,473

Premature deaths due to household air pollution:

559

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$289,837,307
Potential Impacts of Solar Cooking in Belgium

Number of known solar cookers:

Less than 5%
of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 113,721 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

45,615 metric tonnes

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$478,957

2017 Gross Domestic Product:
$492,681,283,049
Potential Impacts of Solar Cooking in Belize

Number of known solar cookers: 14%

of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 52,455 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

21,041 metric tonnes

2017 Gross Domestic Product: $1,862,614,800

Premature deaths due to household air pollution:

49

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$13,653,579
Potential Impacts of Solar Cooking in Benin

- Number of known solar cookers: 93%
- 93% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
- = 10,505,150 people
- CO₂ emissions prevented from using existing solar cookers: metric tonnes
- Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 4,213,765 metric tonnes
- 2017 Gross Domestic Product: $9,246,696,924
- Premature deaths due to household air pollution: 9,953
- Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $993,039,847
Potential Impacts of Solar Cooking in Bhutan

Number of known solar cookers:

35% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 290,740 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

116,620 metric tonnes

Premature deaths due to household air pollution:

415

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$124,150,154
Potential Impacts of Solar Cooking in Bolivia

Number of known solar cookers: **13,820**

23% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= **2,541,868 people**

CO$_2$ emissions prevented from using existing solar cookers: **19,901 metric tonnes**

Potential prevented CO$_2$ emissions by switching from solid fuels to solar cooking: **1,019,579 metric tonnes**

2017 Gross Domestic Product: **$37,508,642,113**

Premature deaths due to household air pollution: **2,824**

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: **$715,085,656**
Potential Impacts of Solar Cooking in Bosnia and Herzegovina

Number of known solar cookers:

58% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 2,069,140 people

CO₂ emissions prevented from using existing solar cookers:

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

829,961 metric tonnes

2017 Gross Domestic Product:

$18,054,854,789

Premature deaths due to household air pollution:

2,985

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,148,971,529
Potential Impacts of Solar Cooking in Botswana

Number of known solar cookers:

37% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 847,915 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

340,111 metric tonnes

2017 Gross Domestic Product:

$17,406,565,823

Premature deaths due to household air pollution:

706

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$340,131,116
Potential Impacts of Solar Cooking in Borneo

Number of known solar cookers: 1

% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= people

2017 Gross Domestic Product: $

CO₂ emissions prevented from using existing solar cookers: 1 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: metric tonnes

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $
Potential Impacts of Solar Cooking in Brazil

Number of known solar cookers: 98

5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 10,464,414 people

CO₂ emissions prevented from using existing solar cookers: 141 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 4,197,425 metric tonnes

2017 Gross Domestic Product: $2,055,505,502,225

Premature deaths due to household air pollution: 14,130

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $6,298,390,019
Potential Impacts of Solar Cooking in Brunei Darussalam

- Number of known solar cookers:

- Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

 = 4,287 people

- CO₂ emissions prevented from using existing solar cookers:

 metric tonnes

- 2017 Gross Domestic Product:

 $12,128,089,002

- Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

 1,720 metric tonnes

- Premature deaths due to household air pollution:

- Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

 $18,055
Potential Impacts of Solar Cooking in Bulgaria

Number of known solar cookers: 100

11% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= 778,359 people

CO₂ emissions prevented from using existing solar cookers:
144 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
312,211 metric tonnes

2017 Gross Domestic Product: $58,220,973,783

Premature deaths due to household air pollution:
1,612

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
$893,842,867
Potential Impacts of Solar Cooking in Burkina Faso

Number of known solar cookers: 1,022

94% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 18,233,713 people

CO₂ emissions prevented from using existing solar cookers: 1,472 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 7,313,801 metric tonnes

2017 Gross Domestic Product: $12,322,864,245

Premature deaths due to household air pollution: 13,131

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $1,144,526,450
Potential Impacts of Solar Cooking in Burundi

Number of known solar cookers:

94% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 10,321,033 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

4,139,913 metric tonnes

2017 Gross Domestic Product:

$3,172,416,146

Premature deaths due to household air pollution:

8,324

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$364,820,104
Potential Impacts of Solar Cooking in Burma/Myanmar

Number of known solar cookers: 1

% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = people

CO₂ emissions prevented from using existing solar cookers: 1 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: metric tonnes

2017 Gross Domestic Product: $

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $
Potential Impacts of Solar Cooking in Cabo Verde

Number of known solar cookers:

31% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

$31\% \times 560,000 \approx 169,380$ people

CO$_2$ emissions prevented from using existing solar cookers:

$169,380 \times 425 \approx 70,504,300$ metric tonnes

Potential prevented CO$_2$ emissions by switching from solid fuels to solar cooking:

$169,380 \times 679 \approx 116,096,180$ metric tonnes

2017 Gross Domestic Product:

$1,772,706,451$

Premature deaths due to household air pollution:

180

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$169,380 \times 0.25 \times 425 \approx 42,438,015$
Potential Impacts of Solar Cooking in Cambodia

Number of known solar cookers: 32

88% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 14,084,728 people

CO₂ emissions prevented from using existing solar cookers:

46 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

5,649,585 metric tonnes

2017 Gross Domestic Product:

$22,158,209,503

Premature deaths due to household air pollution:

10,412

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,622,864,130
Potential Impacts of Solar Cooking in Cameroon

Number of known solar cookers: 280

78% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= 18,761,907 people

CO₂ emissions prevented from using existing solar cookers:
403 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
7,525,667 metric tonnes

2017 Gross Domestic Product:
$34,922,782,311

Premature deaths due to household air pollution:
18,666

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
$2,716,064,776
Potential Impacts of Solar Cooking in Canada

Number of known solar cookers: **3,626**

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 367,081 people

CO₂ emissions prevented from using existing solar cookers: **5,221 metric tonnes**

2017 Gross Domestic Product: **$1,653,042,795,255**

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: **147,241 metric tonnes**

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: **$1,546,034**
Potential Impacts of Solar Cooking in Central African Republic

Number of known solar cookers:

94% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 4,426,126 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

1,775,382 metric tonnes

2017 Gross Domestic Product:

$1,949,411,659

Premature deaths due to household air pollution:

4,891

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$205,822,761
Potential Impacts of Solar Cooking in Chad

Number of known solar cookers: **142,160**

94% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 14,154,994 people

CO₂ emissions prevented from using existing solar cookers: **204,710 metric tonnes**

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: **5,677,769 metric tonnes**

2017 Gross Domestic Product: **$9,871,247,732**

Premature deaths due to household air pollution: **19,811**

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: **$1,724,944,469**
Potential Impacts of Solar Cooking in Chile

- Number of known solar cookers: **3,026**
- 7% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) which equals **1,263,831 people**
- CO₂ emissions prevented from using existing solar cookers: **4,357 metric tonnes**
- Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: **506,940 metric tonnes**
- 2017 Gross Domestic Product: **$277,075,944,402**
- Premature deaths due to household air pollution: **1,597**
- Potential savings if 100% of people using solid fuels solar cook ¼ of the time: **$859,149,022**
Potential Impacts of Solar Cooking in China

Number of known solar cookers: 2,449,387

45% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 623,877,750 people

CO₂ emissions prevented from using existing solar cookers:

3,527,117 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

250,246,228 metric tonnes

2017 Gross Domestic Product:

$12,237,700,479,375

Premature deaths due to household air pollution:

1,033,906

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$491,290,503,485
Potential Impacts of Solar Cooking in Colombia

Number of known solar cookers:

14% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 6,869,186 people

2017 Gross Domestic Product: $314,457,601,860

CO₂ emissions prevented from using existing solar cookers:

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

2,755,328 metric tonnes

Premature deaths due to household air pollution:

4,672

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,988,145,091
Potential Impacts of Solar Cooking in Comoros

Number of known solar cookers:

73% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 602,295 people

CO₂ emissions prevented from using existing solar cookers:

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

2017 Gross Domestic Product:

$1,068,124,330

Premature deaths due to household air pollution:

606

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$69,752,679
Potential Impacts of Solar Cooking in Congo

Number of known solar cookers:

73% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 3,892,955 people

CO\textsubscript{2} emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO\textsubscript{2} emissions by switching from solid fuels to solar cooking:

1,561,520 metric tonnes

2017 Gross Domestic Product:

$8,701,334,800

Premature deaths due to household air pollution:

2,645

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$523,643,057
Potential Impacts of Solar Cooking in Costa Rica

Number of known solar cookers: 2

5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 245,288 people

CO₂ emissions prevented from using existing solar cookers:

3 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

98,389 metric tonnes

2017 Gross Domestic Product:

$57,285,984,448

Premature deaths due to household air pollution:

307

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$147,972,497
Potential Impacts of Solar Cooking in Croatia

Number of known solar cookers:

8%

of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 330,056 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

132,390 metric tonnes

2017 Gross Domestic Product:

$55,213,087,271

Premature deaths due to household air pollution:

801

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$431,024,611
Potential Impacts of Solar Cooking in Cuba

Number of known solar cookers: 250

7% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= 803,925 people

CO₂ emissions prevented from using existing solar cookers:
360 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
322,466 metric tonnes

Premature deaths due to household air pollution:
4,694

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
$3,385,888
Potential Impacts of Solar Cooking in Cyprus

Number of known solar cookers: 4

5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 58,978 people

CO₂ emissions prevented from using existing solar cookers: 6 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 23,657 metric tonnes

2017 Gross Domestic Product: $22,054,225,828

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $248,396
Potential Impacts of Solar Cooking in Czechia

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 105,913 people

CO\textsubscript{2} emissions prevented from using existing solar cookers:

metric tonnes

2017 Gross Domestic Product:

$215,725,534,372

Potential prevented CO\textsubscript{2} emissions by switching from solid fuels to solar cooking:

42,483 metric tonnes

Premature deaths due to household air pollution:

635

Potential savings if 100% of people using solid fuels solar cook \(\frac{1}{4} \) of the time:

$522,873,504
Potential Impacts of Solar Cooking in Democratic People's Republic of...

Number of known solar cookers:

92% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 23,451,688 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

9,406,805 metric tonnes

2017 Gross Domestic Product:

$...

Premature deaths due to household air pollution:

43,796

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$98,771,454
Potential Impacts of Solar Cooking in Democratic Republic of Congo

Number of known solar cookers: 265

94% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 77,272,989 people

CO₂ emissions prevented from using existing solar cookers:

382 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

30,995,293 metric tonnes

2017 Gross Domestic Product:

$37,642,482,562

Premature deaths due to household air pollution:

61,598

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$3,093,223,017
Potential Impacts of Solar Cooking in Denmark

Number of known solar cookers: 1

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 57,696 people

2017 Gross Domestic Product: $324,871,968,807

CO₂ emissions prevented from using existing solar cookers: 1 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 23,143 metric tonnes

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $242,998
Potential Impacts of Solar Cooking in Djibouti

Number of known solar cookers:

17% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 162,687 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

2017 Gross Domestic Product:

$1,844,674,435

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

65,256 metric tonnes

Premature deaths due to household air pollution:

682

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$685,191
Potential Impacts of Solar Cooking in Dominican Republic

Number of known solar cookers: **237**

9% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= **969,030** people

CO₂ emissions prevented from using existing solar cookers:

341 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

388,692 metric tonnes

2017 Gross Domestic Product: **$75,931,656,815**

Premature deaths due to household air pollution:

1,264

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$**579,292,339**
Potential Impacts of Solar Cooking in Ecuador

Number of known solar cookers:

Less than 5%

of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 166,249 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

66,685 metric tonnes

2017 Gross Domestic Product:

$104,295,862,000

Premature deaths due to household air pollution:

729

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$256,593,822
Potential Impacts of Solar Cooking in Egypt

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 975,532 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

391,300 metric tonnes

Premature deaths due to household air pollution:

3,578

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,259,741,021
Number of known solar cookers: 10

19% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 1,211,792 people

CO₂ emissions prevented from using existing solar cookers: 14 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 486,067 metric tonnes

2017 Gross Domestic Product: $24,805,439,600

Premature deaths due to household air pollution: 941

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $250,838,222
Potential Impacts of Solar Cooking in Equatorial Guinea

Number of known solar cookers:

44% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 557,783 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

223,735 metric tonnes

2017 Gross Domestic Product:

$12,293,579,173

Premature deaths due to household air pollution:

811

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$518,641,521
Potential Impacts of Solar Cooking in Eritrea

Number of known solar cookers:

63% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= people

2017 Gross Domestic Product: $

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

metric tonnes

Premature deaths due to household air pollution:

3,402

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$
Potential Impacts of Solar Cooking in Estonia

Number of known solar cookers:

Less than 5%
of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 13,155 people

CO$_2$ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO$_2$ emissions by switching from solid fuels to solar cooking:

5,277 metric tonnes

2017 Gross Domestic Product:

$25,921,079,612$

Premature deaths due to household air pollution:

238

Potential savings if 100% of people using solid fuels solar cook $\frac{3}{4}$ of the time:

$173,567,108$
Potential Impacts of Solar Cooking in Eswatini

Number of known solar cookers:

60% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 834,025 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

334,539 metric tonnes

2017 Gross Domestic Product:

$4,433,664,364

Premature deaths due to household air pollution:

668

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$188,935,028
Potential Impacts of Solar Cooking in Ethiopia

Number of known solar cookers: 7,567

94% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 99,709,566 people

CO₂ emissions prevented from using existing solar cookers: 10,896 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 39,994,923 metric tonnes

2017 Gross Domestic Product: $80,561,496,134

Premature deaths due to household air pollution: 64,735

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $5,767,297,853
Potential Impacts of Solar Cooking in Fiji

Number of known solar cookers:

40% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 362,201 people

CO₂ emissions prevented from using existing solar cookers:

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

145,284 metric tonnes

2017 Gross Domestic Product:

$5,061,202,767

Premature deaths due to household air pollution:

501

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$152,238,001
Potential Impacts of Solar Cooking in Finland

Number of known solar cookers: 4

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 55,113 people

CO$_2$ emissions prevented from using existing solar cookers:

6 metric tonnes

Potential prevented CO$_2$ emissions by switching from solid fuels to solar cooking:

22,107 metric tonnes

2017 Gross Domestic Product: $251,884,887,973

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$232,120
Potential Impacts of Solar Cooking in France

Number of known solar cookers: **414**

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = **671,186 people**

CO₂ emissions prevented from using existing solar cookers: **596 metric tonnes**

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: **269,222 metric tonnes**

2017 Gross Domestic Product: **$2,582,501,307,216**

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: **$2,826,836**
Potential Impacts of Solar Cooking in Gabon

Number of known solar cookers:

20% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 405,027 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

162,462 metric tonnes

2017 Gross Domestic Product:

$15,013,950,984

Premature deaths due to household air pollution:

412

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$208,101,338
Potential Impacts of Solar Cooking in Gambia

Number of known solar cookers: 9,247

94% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= 1,995,540 people

CO₂ emissions prevented from using existing solar cookers:
13,316 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
800,439 metric tonnes

2017 Gross Domestic Product: $1,489,464,788

Premature deaths due to household air pollution:
1,540

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
$124,577,252
Potential Impacts of Solar Cooking in Georgia

Number of known solar cookers:

46% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 1,709,866 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

2017 Gross Domestic Product:

$15,081,338,092

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

685,852 metric tonnes

Premature deaths due to household air pollution:

2,954

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$978,851,613
Potential Impacts of Solar Cooking in Germany

Number of known solar cookers: 64,011

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 826,950 people

CO₂ emissions prevented from using existing solar cookers: 92,176 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 331,701 metric tonnes

2017 Gross Domestic Product: $3,677,439,129,777

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $3,482,865
Potential Impacts of Solar Cooking in Ghana

Number of known solar cookers: 606

83% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 23,931,912 people

CO₂ emissions prevented from using existing solar cookers:

873 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

9,599,430 metric tonnes

2017 Gross Domestic Product:

$58,996,776,238

Premature deaths due to household air pollution:

20,988

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$3,552,939,320
Potential Impacts of Solar Cooking in Greece

Number of known solar cookers: **101**

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= **107,604** people

CO₂ emissions prevented from using existing solar cookers:

145 metric tonnes

2017 Gross Domestic Product:

$200,288,277,129

Premature deaths due to household air pollution:

1,838

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

43,162 metric tonnes

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,077,467,217
Potential Impacts of Solar Cooking in Grenada

Number of known solar cookers:

Less than 5%

of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 1,078 people

2017 Gross Domestic Product:

$1,126,882,296

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

433 metric tonnes

Premature deaths due to household air pollution:

6

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$2,610,817
Potential Impacts of Solar Cooking in Guatemala

Number of known solar cookers: 60

64% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= 10,824,642 people

CO₂ emissions prevented from using existing solar cookers:
86 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
4,341,918 metric tonnes

2017 Gross Domestic Product: $75,620,095,538

Premature deaths due to household air pollution:
5,712

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
$1,558,686,514
Potential Impacts of Solar Cooking in Guinea

Number of known solar cookers: 1,222

95% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 12,081,317 people

CO₂ emissions prevented from using existing solar cookers:

1,760 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

4,845,988 metric tonnes

2017 Gross Domestic Product:

$10,472,514,515

Premature deaths due to household air pollution:

12,899

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,267,759,727
Potential Impacts of Solar Cooking in Guinea-Bissau

Number of known solar cookers:

94% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 1,768,219 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

709,258 metric tonnes

2017 Gross Domestic Product:

$1,346,841,897

Premature deaths due to household air pollution:

1,573

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$126,372,696
Potential Impacts of Solar Cooking in Guyana

- Number of known solar cookers: 6%
- of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
 - = 46,672 people
- CO₂ emissions prevented from using existing solar cookers: metric tonnes
- Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 18,721 metric tonnes
- Premature deaths due to household air pollution: 281
- Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $74,723,060
- 2017 Gross Domestic Product: $3,621,046,005
Potential Impacts of Solar Cooking in Haiti

Number of known solar cookers: 4,555

92% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 10,102,731 people

CO₂ emissions prevented from using existing solar cookers: 6,559 metric tonnes

2017 Gross Domestic Product: $8,408,150,518

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 4,052,349 metric tonnes

Premature deaths due to household air pollution: 11,204

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $935,043,122
Potential Impacts of Solar Cooking in Honduras

Number of known solar cookers:

10% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 926,507 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

371,635 metric tonnes

2017 Gross Domestic Product:

$22,978,532,897

Premature deaths due to household air pollution:

2,269

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$409,591,830
Potential Impacts of Solar Cooking in Hungary

Number of known solar cookers: 11%

11% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 1,075,924 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

2017 Gross Domestic Product:

$139,135,029,758

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

431,568 metric tonnes

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$4,531,468
Potential Impacts of Solar Cooking in Hong Kong

- Number of known solar cookers: 6

- Of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 6

- CO₂ emissions prevented from using existing solar cookers: 9 metric tonnes

- Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: metric tonnes

- Premature deaths due to household air pollution:

- Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
Potential Impacts of Solar Cooking in Iceland

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 3,413 people

CO₂ emissions prevented from using existing solar cookers:

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

1,369 metric tonnes

2017 Gross Domestic Product:

$23,909,289,979

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$14,374
Potential Impacts of Solar Cooking in India

Number of known solar cookers: **705,310**

64% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 857,075,281 people

CO₂ emissions prevented from using existing solar cookers:

1,015,646 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

343,785,071 metric tonnes

2017 Gross Domestic Product:

$2,600,818,243,560

Premature deaths due to household air pollution:

1,085,867

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$260,016,000,707
Potential Impacts of Solar Cooking in Indonesia

Number of known solar cookers:

39% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 102,956,638 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

41,297,370 metric tonnes

2017 Gross Domestic Product:

$1,015,539,017,537

Premature deaths due to household air pollution:

133,607

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$49,573,230,216
Potential Impacts of Solar Cooking in Iran

Number of known solar cookers: 28

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 811,628 people

CO₂ emissions prevented from using existing solar cookers:

40 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

325,555 metric tonnes

2017 Gross Domestic Product:

$454,012,768,724

Premature deaths due to household air pollution:

1,147

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$647,337,902
Potential Impacts of Solar Cooking in Iraq

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 382,746 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

153,525 metric tonnes

2017 Gross Domestic Product:

$192,060,810,811

Premature deaths due to household air pollution:

742

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$353,851,789
Potential Impacts of Solar Cooking in Ireland

Number of known solar cookers:

Less than 5%
of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 48,136 people

2017 Gross Domestic Product:
$333,730,764,773

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
19,308 metric tonnes

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$202,735
Potential Impacts of Solar Cooking in Israel

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 87,124 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

34,947 metric tonnes

2017 Gross Domestic Product:

$350,850,537,827

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$366,940
Potential Impacts of Solar Cooking in Italy

Number of known solar cookers: **101**

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = **605,514 people**

CO₂ emissions prevented from using existing solar cookers: **145 metric tonnes**

2017 Gross Domestic Product: **$1,934,797,937,411**

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: **242,880 metric tonnes**

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: **$2,550,243**
Potential Impacts of Solar Cooking in Ivory Coast

Number of known solar cookers: 6

81% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 19,678,748 people

CO₂ emissions prevented from using existing solar cookers:

9 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

7,893,425 metric tonnes

2017 Gross Domestic Product: $37,353,276,059

Premature deaths due to household air pollution:

26,364

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$3,984,384,234
Potential Impacts of Solar Cooking in Jamaica

Number of known solar cookers: 70

11% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= 317,933 people

CO₂ emissions prevented from using existing solar cookers:
101 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
127,527 metric tonnes

2017 Gross Domestic Product: $14,781,107,822

Premature deaths due to household air pollution:
292

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
$85,421,522
Potential Impacts of Solar Cooking in Japan

Number of known solar cookers: 3,003

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 1,267,858 people

CO₂ emissions prevented from using existing solar cookers: 4,324 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 508,556 metric tonnes

2017 Gross Domestic Product: $4,872,136,945,508

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$5,339,836
Potential Impacts of Solar Cooking in Jordan

Number of known solar cookers:

Less than 5%
of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 97,024 people

CO₂ emissions prevented from using existing solar cookers:

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

2017 Gross Domestic Product:

$40,068,308,451

Premature deaths due to household air pollution:

68

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$20,174,442
Potential Impacts of Solar Cooking in Kazakhstan

Number of known solar cookers:

9% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 1,623,388 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

651,164 metric tonnes

2017 Gross Domestic Product:

$162,886,867,832

Premature deaths due to household air pollution:

1,771

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,209,385,894
Potential Impacts of Solar Cooking in Kenya

Number of known solar cookers: **20,431**

84% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = **41,747,884** people

CO₂ emissions prevented from using existing solar cookers: **29,421 metric tonnes**

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: **16,745,669 metric tonnes**

2017 Gross Domestic Product: **$79,263,075,749**

Premature deaths due to household air pollution: **15,140**

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: **$2,114,666,600**
Potential Impacts of Solar Cooking in Kiribati

Number of known solar cookers:

45% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 52,379 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

21,010 metric tonnes

2017 Gross Domestic Product:

$185,572,502

Premature deaths due to household air pollution:

85

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$8,061,983
Potential Impacts of Solar Cooking in Kuwait

- **Number of known solar cookers:**
 - Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
 - = 41,365 people

- **CO₂ emissions prevented from using existing solar cookers:**
 - metric tonnes

- **2017 Gross Domestic Product:**
 - $120,126,277,613

- **Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:**
 - 16,592 metric tonnes

- **Premature deaths due to household air pollution:**

- **Potential savings if 100% of people using solid fuels solar cook ¼ of the time:**
 - $174,218
Potential Impacts of Solar Cooking in Kyrgyzstan

Number of known solar cookers:

26% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 1,612,390 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

646,753 metric tonnes

2017 Gross Domestic Product:

$7,564,738,836

Premature deaths due to household air pollution:

1,734

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$252,342,111
Potential Impacts of Solar Cooking in Laos

Number of known solar cookers: 95%

95% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 6,515,252 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

2,613,360 metric tonnes

2017 Gross Domestic Product:

$16,853,087,485

Premature deaths due to household air pollution:

5,757

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,381,301,836
Potential Impacts of Solar Cooking in Latvia

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 19,407 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

7,785 metric tonnes

2017 Gross Domestic Product:

$30,264,454,642

Premature deaths due to household air pollution:

321

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$192,681,698
Potential Impacts of Solar Cooking in Lebanon

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 60,824 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

24,397 metric tonnes

2017 Gross Domestic Product:

$53,576,985,687

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$256,171
Potential Impacts of Solar Cooking in Lesotho

Number of known solar cookers: 466

62% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 1,384,670 people

2017 Gross Domestic Product: $2,578,265,358

Premature deaths due to household air pollution:

1,774

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$212,890,477

CO₂ emissions prevented from using existing solar cookers:

671 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

555,411 metric tonnes
Potential Impacts of Solar Cooking in Liberia

Number of known solar cookers:

95% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 4,495,311 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

1,803,133 metric tonnes

2017 Gross Domestic Product:

$3,285,455,000

Premature deaths due to household air pollution:

3,210

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$212,626,207
Potential Impacts of Solar Cooking in Libya

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 63,746 people

CO$_2$ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO$_2$ emissions by switching from solid fuels to solar cooking:

25,569 metric tonnes

2017 Gross Domestic Product:

$38,107,728,083

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook $\frac{1}{4}$ of the time:

$268,480
Potential Impacts of Solar Cooking in Lithuania

Number of known solar cookers:
Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= 28,277 people

CO₂ emissions prevented from using existing solar cookers:
metric tonnes

2017 Gross Domestic Product: $47,168,303,744

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
11,342 metric tonnes

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
$119,095
Potential Impacts of Solar Cooking in Luxembourg

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 5,994 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

2017 Gross Domestic Product:

$62,404,461,275

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

2,404 metric tonnes

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$25,247
Potential Impacts of Solar Cooking in Madagascar

Number of known solar cookers: **13,470**

95% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 24,292,350 people

CO₂ emissions prevented from using existing solar cookers:

19,397 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

9,744,007 metric tonnes

2017 Gross Domestic Product: **$11,499,803,807**

Premature deaths due to household air pollution:

16,171

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,240,653,930
Potential Impacts of Solar Cooking in Malawi

- Number of known solar cookers: **315**
- 95% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 17,690,999 people
- CO₂ emissions prevented from using existing solar cookers: **454 metric tonnes**
- Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: **7,096,111 metric tonnes**
- 2017 Gross Domestic Product: **$6,303,292,264**
- Premature deaths due to household air pollution: **7,941**
- Potential savings if 100% of people using solid fuels solar cook ¼ of the time: **$529,494,343**
Potential Impacts of Solar Cooking in Malaysia

- **Number of known solar cookers:**
 - Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
 - = 316,243 people

- **CO\textsubscript{2} emissions prevented from using existing solar cookers:**
 - metric tonnes

- **Potential prevented CO\textsubscript{2} emissions by switching from solid fuels to solar cooking:**
 - 126,849 metric tonnes

- **Premature deaths due to household air pollution:**
 - 1,708

- **2017 Gross Domestic Product:**
 - $314,710,259,511

- **Potential savings if 100% of people using solid fuels solar cook \(\frac{1}{4}\) of the time:**
 - $1,265,734,002
Potential Impacts of Solar Cooking in Maldives

Number of known solar cookers:

Less than 5%
of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 4,363 people

CO₂ emissions prevented from using existing solar cookers:

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

1,750 metric tonnes

2017 Gross Domestic Product:

$4,865,546,027

Premature deaths due to household air pollution:

17

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$7,994,315
Potential Impacts of Solar Cooking in Mali

Number of known solar cookers: 4,690

95% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 17,614,881 people

CO₂ emissions prevented from using existing solar cookers: 6,754 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 7,065,579 metric tonnes

2017 Gross Domestic Product: $15,334,336,144

Premature deaths due to household air pollution: 14,971

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $1,472,031,401
Potential Impacts of Solar Cooking in Malta

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 4,653 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

1,866 metric tonnes

2017 Gross Domestic Product:

$12,518,134,319

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$19,597
Potential Impacts of Solar Cooking in Mauritania

Number of known solar cookers:

57%
of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 2,519,505 people

2017 Gross Domestic Product:

$5,024,708,656

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

1,010,609 metric tonnes

Premature deaths due to household air pollution:

2,411

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$368,368,339
Potential Impacts of Solar Cooking in Mauritius

Number of known solar cookers: **1**

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= **12,646** people

CO₂ emissions prevented from using existing solar cookers:

1 metric tonnes

2017 Gross Domestic Product: **$13,266,427,697**

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

5,073 metric tonnes

Premature deaths due to household air pollution:

141

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$83,640,853
Potential Impacts of Solar Cooking in Marshall Islands

Number of known solar cookers:

33% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 17,532 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

7,032 metric tonnes

2017 Gross Domestic Product:

$204,173,430

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$73,839
Potential Impacts of Solar Cooking in Mexico

Number of known solar cookers: 40,644

15% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= 19,374,491 people

CO₂ emissions prevented from using existing solar cookers:
58,527 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
7,771,384 metric tonnes

2017 Gross Domestic Product:
$1,150,887,823,404

Premature deaths due to household air pollution:
15,680

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
$8,265,813,712
Potential Impacts of Solar Cooking in Micronesia

Number of known solar cookers:

41% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 43,273 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

17,357 metric tonnes

2017 Gross Domestic Product:

$336,427,500

Premature deaths due to household air pollution:

80

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$11,431,693
Potential Impacts of Solar Cooking in Monaco

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 387 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 155 metric tonnes

2017 Gross Domestic Product: $

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,630
Potential Impacts of Solar Cooking in Mongolia

Number of known solar cookers:

63% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 1,937,658 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

777,222 metric tonnes

2017 Gross Domestic Product:

$11,433,635,876

Premature deaths due to household air pollution:

1,799

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$697,034,874
Potential Impacts of Solar Cooking in Montenegro

Number of known solar cookers:

38% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 236,539 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

94,879 metric tonnes

2017 Gross Domestic Product:

$4,844,592,067

Premature deaths due to household air pollution:

449

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$225,935,658
Potential Impacts of Solar Cooking in Morocco

- Number of known solar cookers: 8
- Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
 - = 357,396 people
- CO₂ emissions prevented from using existing solar cookers:
 - 12 metric tonnes
- Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
 - 143,357 metric tonnes
- 2017 Gross Domestic Product: $109,708,728,849
- Premature deaths due to household air pollution: 1,337
- Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
 - $358,007,970
Potential Impacts of Solar Cooking in Mozambique

Number of known solar cookers: 2

95% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 28,185,392 people

CO₂ emissions prevented from using existing solar cookers:

3 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

11,305,561 metric tonnes

2017 Gross Domestic Product:

$12,645,508,634

Premature deaths due to household air pollution:

15,238

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,018,057,861
Potential Impacts of Solar Cooking in Myanmar

Number of known solar cookers:

93% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 49,634,666 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

19,909,170 metric tonnes

2017 Gross Domestic Product:

$67,068,745,521

Premature deaths due to household air pollution:

44,573

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$9,647,863,885
Potential Impacts of Solar Cooking in Namibia

Number of known solar cookers: 575

54% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 1,368,249 people

CO₂ emissions prevented from using existing solar cookers:

828 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

548,824 metric tonnes

Premature deaths due to household air pollution:

1,315

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$430,692,525

2017 Gross Domestic Product: $13,253,698,015
Potential Impacts of Solar Cooking in Nauru

Number of known solar cookers: 6% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 819 people

2017 Gross Domestic Product: $113,884,908

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 328 metric tonnes

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $3,449
Potential Impacts of Solar Cooking in Nepal

Number of known solar cookers: **14,513**

80% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= **23,443,998 people**

CO₂ emissions prevented from using existing solar cookers:

20,899 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

9,403,721 metric tonnes

2017 Gross Domestic Product:

$24,880,266,905$

Premature deaths due to household air pollution:

23,397

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$2,657,130,394$
Potential Impacts of Solar Cooking in Netherlands

Number of known solar cookers: 1,000

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 171,329 people

CO₂ emissions prevented from using existing solar cookers:

1,440 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

68,722 metric tonnes

2017 Gross Domestic Product:

$826,200,282,501

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$721,584
Potential Impacts of Solar Cooking in New Zealand

Number of known solar cookers: 305

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 47,939 people

CO₂ emissions prevented from using existing solar cookers: 439 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 19,229 metric tonnes

2017 Gross Domestic Product: $205,852,838,255

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $201,905
Potential Impacts of Solar Cooking in Nicaragua

Number of known solar cookers: 3,272

53% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 3,295,317 people

CO₂ emissions prevented from using existing solar cookers:

4,712 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

1,321,799 metric tonnes

2017 Gross Domestic Product:

$13,814,261,536

Premature deaths due to household air pollution:

1,752

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$369,457,043
Potential Impacts of Solar Cooking in Niger

Number of known solar cookers:

95% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 20,403,481 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

8,184,126 metric tonnes

2017 Gross Domestic Product:

$8,119,710,126

Premature deaths due to household air pollution:

21,078

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,142,001,272
Potential Impacts of Solar Cooking in Nigeria

Number of known solar cookers: 1,017

75% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 143,164,733 people

CO₂ emissions prevented from using existing solar cookers:

1,464 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

57,425,408 metric tonnes

2017 Gross Domestic Product:

$375,745,486,521

Premature deaths due to household air pollution:

218,362

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$45,118,073,035
Potential Impacts of Solar Cooking in Niue

Number of known solar cookers:

10% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

metric tonnes

2017 Gross Domestic Product:

$

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$
Potential Impacts of Solar Cooking in Norway

Number of known solar cookers: 45

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 52,822 people

CO₂ emissions prevented from using existing solar cookers:

65 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

21,188 metric tonnes

2017 Gross Domestic Product: $398,831,956,478

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$222,471
Potential Impacts of Solar Cooking in Oman

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 46,363 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

18,597 metric tonnes

2017 Gross Domestic Product:

$72,642,652,796

Premature deaths due to household air pollution:

111

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$109,797,870
Potential Impacts of Solar Cooking in Pakistan

Number of known solar cookers: 21,000

60% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= 114,269,254 people

CO₂ emissions prevented from using existing solar cookers:
30,240 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
45,835,021 metric tonnes

2017 Gross Domestic Product: $304,951,818,494

Premature deaths due to household air pollution:
127,250

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
$25,187,960,090
Potential Impacts of Solar Cooking in Palau

Number of known solar cookers:

Less than 5%
of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 217 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

2017 Gross Domestic Product:

$289,823,500

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

87 metric tonnes

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$915
Potential Impacts of Solar Cooking in Panama

Number of known solar cookers:

15% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 614,788 people

CO₂ emissions prevented from using existing solar cookers: metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 246,600 metric tonnes

2017 Gross Domestic Product: $62,283,756,584

Premature deaths due to household air pollution:

420

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$221,481,543
Potential Impacts of Solar Cooking in Palestine

Number of known solar cookers: 160

% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = people

CO₂ emissions prevented from using existing solar cookers: 230 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: metric tonnes

2017 Gross Domestic Product: $

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $
Potential Impacts of Solar Cooking in Papua New Guinea

Number of known solar cookers:

67% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 5,528,279 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

2017 Gross Domestic Product:

$20,536,314,601

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

2,217,471 metric tonnes

Premature deaths due to household air pollution:

6,002

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$958,554,262
Potential Impacts of Solar Cooking in Paraguay

Number of known solar cookers:

42% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 2,860,745 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

2017 Gross Domestic Product:

$39,667,400,816

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

1,147,485 metric tonnes

Premature deaths due to household air pollution:

1,965

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$772,081,324
Potential Impacts of Solar Cooking in Peru

Number of known solar cookers: 7,368

34% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 10,936,265 people

CO₂ emissions prevented from using existing solar cookers:

10,610 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

4,386,691 metric tonnes

2017 Gross Domestic Product:

$211,389,272,242

Premature deaths due to household air pollution:

9,716

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$3,884,893,413
Potential Impacts of Solar Cooking in Phillipines

Number of known solar cookers:

54% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 56,655,769 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

22,725,434 metric tonnes

2017 Gross Domestic Product:

$313,595,208,737

Premature deaths due to household air pollution:

86,678

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$23,632,377,540
Potential Impacts of Solar Cooking in Poland

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 379,758 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

2017 Gross Domestic Product:

$526,465,839,003

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

152,326 metric tonnes

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,599,428
Potential Impacts of Solar Cooking in Portugal

Number of known solar cookers: **5,011**

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = **102,937 people**

CO₂ emissions prevented from using existing solar cookers: **7,216 metric tonnes**

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: **41,290 metric tonnes**

2017 Gross Domestic Product: **$217,571,083,046**

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: **$433,540**
Potential Impacts of Solar Cooking in Puerto Rico

Number of known solar cookers: 35

% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= people

CO₂ emissions prevented from using existing solar cookers:

50 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

metric tonnes

2017 Gross Domestic Product:

$

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$
Potential Impacts of Solar Cooking in Qatar

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 26,392 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

10,586 metric tonnes

2017 Gross Domestic Product:

$166,928,571,429

Premature deaths due to household air pollution:

10

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$38,201,658
Potential Impacts of Solar Cooking in Republic of Korea (South Korea)

Number of known solar cookers:

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 514,662 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

206,438 metric tonnes

2017 Gross Domestic Product:

$1,530,750,923,149

Premature deaths due to household air pollution:

2,279

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$2,109,393,770
Potential Impacts of Solar Cooking in Republic of Moldova

Number of known solar cookers:

8% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 283,980 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

113,908 metric tonnes

2017 Gross Domestic Product:

$8,128,493,432

Premature deaths due to household air pollution:

955

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,196,038
Potential Impacts of Solar Cooking in Romania

Number of known solar cookers:

21% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 4,113,173 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

2017 Gross Domestic Product:
$211,883,923,504

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

1,649,852 metric tonnes

Premature deaths due to household air pollution:

8,728

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$5,829,909,286
Potential Impacts of Solar Cooking in Russia

Number of known solar cookers:

Less than 5%

of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 1,444,950 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

579,590 metric tonnes

2017 Gross Domestic Product:

$1,577,524,145,963

Premature deaths due to household air pollution:

8,770

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$6,096,699,202
Potential Impacts of Solar Cooking in Rwanda

Number of known solar cookers: 26

95% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= 11,597,987 people

CO$_2$ emissions prevented from using existing solar cookers:
37 metric tonnes

Potential prevented CO$_2$ emissions by switching from solid fuels to solar cooking:
4,652,117 metric tonnes

2017 Gross Domestic Product: $9,135,454,442

Premature deaths due to household air pollution: 5,432

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
$523,814,553
Potential Impacts of Solar Cooking in Saint Lucia

Number of known solar cookers:

5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= people

2017 Gross Domestic Product: $1,737,504,296

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

metric tonnes

Premature deaths due to household air pollution:

7

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$2,851,391
Potential Impacts of Solar Cooking in Saint Vincent and the Grenadines

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of known solar cookers:</td>
<td></td>
</tr>
<tr>
<td>5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)</td>
<td>people</td>
</tr>
<tr>
<td>CO₂ emissions prevented from using existing solar cookers:</td>
<td>metric tonnes</td>
</tr>
<tr>
<td>Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:</td>
<td>metric tonnes</td>
</tr>
<tr>
<td>Premature deaths due to household air pollution:</td>
<td>7</td>
</tr>
<tr>
<td>Potential savings if 100% of people using solid fuels solar cook ¼ of the time:</td>
<td>$2,483,703</td>
</tr>
</tbody>
</table>

2017 Gross Domestic Product: $785,222,509
Potential Impacts of Solar Cooking in Samoa

Number of known solar cookers:

62% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 121,793 people

2017 Gross Domestic Product: $840,927,997

CO₂ emissions prevented from using existing solar cookers:

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

48,853 metric tonnes

Premature deaths due to household air pollution:

94

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$21,613,998
Potential Impacts of Solar Cooking in Sao Tome and Principe

Number of known solar cookers:

71% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 145,072 people

CO₂ emissions prevented from using existing solar cookers: metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 58,191 metric tonnes

Premature deaths due to household air pollution:

127

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$17,135,564

2017 Gross Domestic Product: $392,570,293
Potential Impacts of Solar Cooking in Saudi Arabia

Number of known solar cookers:

5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= 1,646,911 people

CO₂ emissions prevented from using existing solar cookers:
metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
660,599 metric tonnes

Premature deaths due to household air pollution:
1,097

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
$1,477,842,457

2017 Gross Domestic Product:
$686,738,400,000

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
Potential Impacts of Solar Cooking in Senegal

Number of known solar cookers: 19,621

61% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 9,668,846 people

CO₂ emissions prevented from using existing solar cookers: 28,254 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 3,878,311 metric tonnes

2017 Gross Domestic Product: $21,070,225,735

Premature deaths due to household air pollution: 7,904

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $1,093,325,664
Potential Impacts of Solar Cooking in Serbia

Number of known solar cookers:

31% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 2,176,903 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

873,187 metric tonnes

2017 Gross Domestic Product:

$41,431,648,801

Premature deaths due to household air pollution:

4,823

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$2,137,336,416
Potential Impacts of Solar Cooking in Seychelles

Number of known solar cookers:

5%
of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 4,792 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

2017 Gross Domestic Product:

$1,497,959,569

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

1,922 metric tonnes

Premature deaths due to household air pollution:

15

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$9,711,004
Potential Impacts of Solar Cooking in Sierra Leone

Number of known solar cookers:

95% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 7,179,351 people

CO₂ emissions prevented from using existing solar cookers:

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

2,879,740 metric tonnes

2017 Gross Domestic Product:

$3,775,047,334

Premature deaths due to household air pollution:

9,036

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$657,167,181
Potential Impacts of Solar Cooking in Singapore

Number of known solar cookers:

5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 280,613 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

112,558 metric tonnes

2017 Gross Domestic Product:

$323,907,234,412

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,181,856
Potential Impacts of Solar Cooking in Slovakia

Number of known solar cookers:

5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 271,995 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

109,101 metric tonnes

2017 Gross Domestic Product:

$95,769,031,980

Premature deaths due to household air pollution:

276

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$207,892,754
Potential Impacts of Solar Cooking in Slovenia

Number of known solar cookers:

5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 103,337 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

41,450 metric tonnes

2017 Gross Domestic Product:

$48,769,655,479

Premature deaths due to household air pollution:

210

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$165,572,655
Potential Impacts of Solar Cooking in Solomon Islands

Number of known solar cookers:

92% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 562,436 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

225,601 metric tonnes

2017 Gross Domestic Product:

$1,303,453,622

Premature deaths due to household air pollution:

333

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$35,780,154
Potential Impacts of Solar Cooking in Somalia

Number of known solar cookers: 1,500

95% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 14,005,397 people

CO₂ emissions prevented from using existing solar cookers:

2,160 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

5,617,764 metric tonnes

2017 Gross Domestic Product:

$7,052,000,000

Premature deaths due to household air pollution:

17,511

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$58,986,518
Potential Impacts of Solar Cooking in South Africa

Number of known solar cookers: **23,110**

12% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= **6,806,059 people**

CO₂ emissions prevented from using existing solar cookers:

33,278 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

2,730,007 metric tonnes

2017 Gross Domestic Product:

$348,871,647,960

Premature deaths due to household air pollution:

13,642

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$5,438,990,461
Potential Impacts of Solar Cooking in South Sudan

Number of known solar cookers:

95% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 11,946,928 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

4,792,083 metric tonnes

2017 Gross Domestic Product:

$[

Premature deaths due to household air pollution:

10,316

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$50,316,868
Potential Impacts of Solar Cooking in Spain

Number of known solar cookers: 1,848

5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 2,328,601 people

CO₂ emissions prevented from using existing solar cookers: 2,661 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 934,035 metric tonnes

2017 Gross Domestic Product: $1,311,320,015,516

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $9,807,369
Potential Impacts of Solar Cooking in Sri Lanka

Number of known solar cookers: 3,509

74% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= 15,868,560 people

CO₂ emissions prevented from using existing solar cookers:
5,053 metric tonnes

2017 Gross Domestic Product: $87,357,205,923

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
6,365,105 metric tonnes

Premature deaths due to household air pollution:
14,507

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
$5,593,265,435
Potential Impacts of Solar Cooking in Sudan

Number of known solar cookers: 3,062

70% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= 28,373,331 people

CO₂ emissions prevented from using existing solar cookers:
4,409 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
11,380,946 metric tonnes

2017 Gross Domestic Product:
$117,487,857,143

Premature deaths due to household air pollution:
25,513

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
$4,620,544,661
Potential Impacts of Solar Cooking in Suriname

Number of known solar cookers:

11% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 61,974 people

CO₂ emissions prevented from using existing solar cookers: metric tonnes

2017 Gross Domestic Product: $2,995,827,901

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 24,859 metric tonnes

Premature deaths due to household air pollution: 78

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $34,205,807
Potential Impacts of Solar Cooking in Swaziland

Number of known solar cookers: 5

% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = people

CO₂ emissions prevented from using existing solar cookers: 7 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: metric tonnes

2017 Gross Domestic Product: $

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $
Potential Impacts of Solar Cooking in Sweden

Number of known solar cookers: 52

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 100,677 people

CO₂ emissions prevented from using existing solar cookers: 75 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 40,383 metric tonnes

2017 Gross Domestic Product: $538,040,458,217

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $424,023
Potential Impacts of Solar Cooking in Switzerland

Number of known solar cookers: **723**

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

- = 84,660 people

CO$_2$ emissions prevented from using existing solar cookers:

- 1,041 metric tonnes

Potential prevented CO$_2$ emissions by switching from solid fuels to solar cooking:

- 33,958 metric tonnes

2017 Gross Domestic Product:

- $678,887,336,848

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

- $356,563
Potential Impacts of Solar Cooking in Syria

Number of known solar cookers:
Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= 182,699 people

CO₂ emissions prevented from using existing solar cookers:
metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
73,283 metric tonnes

2017 Gross Domestic Product:
$

Premature deaths due to household air pollution:
194

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
$769,472
Potential Impacts of Solar Cooking in Tajikistan

Number of known solar cookers:

30% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 2,676,403 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

2017 Gross Domestic Product:

$7,146,449,583

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

1,073,543 metric tonnes

Premature deaths due to household air pollution:

2,200

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$286,783,795
Potential Impacts of Solar Cooking in Thailand

- Number of known solar cookers:
- 23% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
 - = 15,878,628 people
- CO₂ emissions prevented from using existing solar cookers:
 - metric tonnes
- Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
 - 6,369,143 metric tonnes
- 2017 Gross Domestic Product:
 - $455,302,682,986
- Premature deaths due to household air pollution:
 - 29,802
- Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
 - $14,862,379,536
Potential Impacts of Solar Cooking in Republic of North Macedonia

- Number of known solar cookers:
 - 33% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
 - = people

- CO₂ emissions prevented from using existing solar cookers: metric tonnes

- Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: metric tonnes

- 2017 Gross Domestic Product: $11,279,509,014

- Premature deaths due to household air pollution: 1,356

- Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $
Potential Impacts of Solar Cooking in Taiwan

<table>
<thead>
<tr>
<th>Number of known solar cookers:</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)</td>
<td>people</td>
</tr>
<tr>
<td>CO₂ emissions prevented from using existing solar cookers:</td>
<td>58 metric tonnes</td>
</tr>
<tr>
<td>Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:</td>
<td>metric tonnes</td>
</tr>
<tr>
<td>2017 Gross Domestic Product:</td>
<td>$</td>
</tr>
<tr>
<td>Potential savings if 100% of people using solid fuels solar cook ⅓ of the time:</td>
<td>$</td>
</tr>
<tr>
<td>Premature deaths due to household air pollution:</td>
<td></td>
</tr>
</tbody>
</table>

Note: The calculation for the number of people relying on solid fuels is estimated based on the given percentage and total population size. Actual numbers may vary.
Potential Impacts of Solar Cooking in Tanzania

Number of known solar cookers: 5,343

95% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 54,444,518 people

CO₂ emissions prevented from using existing solar cookers:

7,694 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

21,838,470 metric tonnes

2017 Gross Domestic Product:

$52,090,321,003

Premature deaths due to household air pollution:

33,215

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$4,127,355,369
Potential Impacts of Solar Cooking in Timor-Leste

Number of known solar cookers: 1

93% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 1,205,569 people

CO₂ emissions prevented from using existing solar cookers:

1 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

483,571 metric tonnes

Premature deaths due to household air pollution:

787

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$194,138,662

2017 Gross Domestic Product: $2,954,621,000
Potential Impacts of Solar Cooking in Togo

Number of known solar cookers: **15**

95% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
= **7,407,809** people

CO₂ emissions prevented from using existing solar cookers:
22 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:
2,971,378 metric tonnes

2017 Gross Domestic Product:
$4,757,776,485$

Premature deaths due to household air pollution:
6,697

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:
$527,892,652$
Potential Impacts of Solar Cooking in Tonga

Number of known solar cookers:

44%
of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 47,529 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

2017 Gross Domestic Product:

$427,659,795

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

19,064 metric tonnes

Premature deaths due to household air pollution:

43

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$9,063,680
Potential Impacts of Solar Cooking in Trinidad and Tobago

Number of known solar cookers:

Less than 5%
of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 13,691 people

��二氧化碳排放量的降低

使用现有太阳能炊具

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

潜在的CO₂排放量降低

通过从固体燃料转换到太阳能烹饪

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

5,492 metric tonnes

2017年国内生产总值

$22,079,017,627

提前死亡的人数因家庭空气污染

16

潜在的节约

如果100％的人使用固体燃料太阳能烹饪

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$11,382,162
Potential Impacts of Solar Cooking in Tunisia

Number of known solar cookers:

- Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)
- 115,321 people

CO₂ emissions prevented from using existing solar cookers:

- Metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

- 46,257 metric tonnes

2017 Gross Domestic Product:

- $39,952,095,561

Premature deaths due to household air pollution:

- 180

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

- $65,076,578
Potential Impacts of Solar Cooking in Turkmenistan

Number of known solar cookers:

Less than 5%
of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 57,581 people

CO₂ emissions prevented from using existing solar cookers:

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

2017 Gross Domestic Product: $37,926,285,714

Premature deaths due to household air pollution:

74

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$37,178,659
Potential Impacts of Solar Cooking in Turkey

Number of known solar cookers: 6,250

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 807,450 people

CO₂ emissions prevented from using existing solar cookers:

9,000 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

323,880 metric tonnes

2017 Gross Domestic Product:

$851,549,299,635

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$3,400,737
Potential Impacts of Solar Cooking in Tuvalu

Number of known solar cookers:

16% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 1,791 people

CO₂ emissions prevented from using existing solar cookers:

Metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

718 metric tonnes

2017 Gross Domestic Product:

$39,731,317

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$7,542
Potential Impacts of Solar Cooking in Uganda

Number of known solar cookers: **81,516**

95% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= **40,719,810 people**

CO₂ emissions prevented from using existing solar cookers:

117,383 metric tonnes

2017 Gross Domestic Product:

$25,995,031,850

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

16,333,294 metric tonnes

Premature deaths due to household air pollution:

23,364

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$2,072,959,998
Potential Impacts of Solar Cooking in Ukraine

Number of known solar cookers:

Less than 5%
of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 448,312 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

179,824 metric tonnes

2017 Gross Domestic Product:

$112,154,185,121

Premature deaths due to household air pollution:

6,620

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,843,891,368
Potential Impacts of Solar Cooking in United Arab Emirates

Number of known solar cookers: 2

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 94,001 people

CO₂ emissions prevented from using existing solar cookers:

3 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

37,705 metric tonnes

2017 Gross Domestic Product: $382,575,085,092

Premature deaths due to household air pollution:

58

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$114,235,231
Potential Impacts of Solar Cooking in United Kingdom

Number of known solar cookers: **272**

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = **660,223 people**

CO$_2$ emissions prevented from using existing solar cookers: **392 metric tonnes**

Potential prevented CO$_2$ emissions by switching from solid fuels to solar cooking: **264,825 metric tonnes**

2017 Gross Domestic Product: **$2,622,433,959,604**

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: **$2,780,660**
Potential Impacts of Solar Cooking in United States

Number of known solar cookers: 159,335

Less than 5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 3,257,192 people

CO₂ emissions prevented from using existing solar cookers: 229,442 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 1,306,506 metric tonnes

2017 Gross Domestic Product: $19,390,604,000,000

Premature deaths due to household air pollution:

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $13,718,312
Potential Impacts of Solar Cooking in Uruguay

Number of known solar cookers:

Less than 5%

of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 34,568 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

13,866 metric tonnes

2017 Gross Domestic Product:

$56,156,972,158

Premature deaths due to household air pollution:

153

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$72,488,848
Potential Impacts of Solar Cooking in Uzbekistan

Number of known solar cookers: 12%

of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 3,886,464 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

2017 Gross Domestic Product: $49,677,172,714

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

1,558,916 metric tonnes

Premature deaths due to household air pollution:

3,091

 Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$730,129,794
Potential Impacts of Solar Cooking in Vanuatu

Number of known solar cookers:

85% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 234,807 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

2017 Gross Domestic Product:

$862,879,789

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

94,185 metric tonnes

Premature deaths due to household air pollution:

168

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$22,095,622
Potential Impacts of Solar Cooking in Venezuela

Number of known solar cookers:

5% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 1,598,853 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

641,323 metric tonnes

2017 Gross Domestic Product:

$ [value]

Premature deaths due to household air pollution:

971

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$6,733,889
Potential Impacts of Solar Cooking in Vietnam

Number of known solar cookers: 2,500

47% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 44,904,176 people

CO₂ emissions prevented from using existing solar cookers: 3,600 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 18,011,703 metric tonnes

2017 Gross Domestic Product: $223,779,865,815

Premature deaths due to household air pollution: 32,730

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $7,668,365,533
Potential Impacts of Solar Cooking in Yemen

Number of known solar cookers:

32% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 9,040,134 people

CO₂ emissions prevented from using existing solar cookers:

metric tonnes

2017 Gross Domestic Product:

$31,267,675,216

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

3,626,126 metric tonnes

Premature deaths due to household air pollution:

12,334

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,348,283,918
Potential Impacts of Solar Cooking in Zambia

Number of known solar cookers: 92

82% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal)

= 14,017,187 people

CO₂ emissions prevented from using existing solar cookers:

132 metric tonnes

2017 Gross Domestic Product:
$25,868,142,073

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking:

5,622,493 metric tonnes

Premature deaths due to household air pollution:

8,277

Potential savings if 100% of people using solid fuels solar cook ¼ of the time:

$1,305,687,838
Potential Impacts of Solar Cooking in Zimbabwe

Number of known solar cookers: 14,005

71% of the population has reliance on solid fuels (i.e.: dung, firewood, charcoal) = 11,736,232 people

CO₂ emissions prevented from using existing solar cookers: 20,167 metric tonnes

Potential prevented CO₂ emissions by switching from solid fuels to solar cooking: 4,707,569 metric tonnes

2017 Gross Domestic Product: $22,040,902,300

Premature deaths due to household air pollution: 8,417

Potential savings if 100% of people using solid fuels solar cook ¼ of the time: $895,835,066